Notes – Intro 650 B – Permits for measuring air, water, radiological pollution

January 30, 2008

Maggie Clarke, Ph.D.

www.MaggieClarkeEnvironmental.com

 

Like many of the Mayor’s string of regulations, actions, and laws to abridge freedoms, even this revised bill is a blunderbuss which casts a wide net over professionals who have the capacity to help inform us of pollution problems that could impact the public health.   It also will reduce the ability for teachers and professors to assign field investigations of the environment, as each student would need to apply for a permit. 

 

Abridging the freedom to conduct scientific research follows this pattern in NYC in recent years:

 

·        Permit is required of groups of 20 to gather in a public park.  I run a community garden.  The City wants us to have more people come to the garden.  But requiring a permit squelches any spontaneous gatherings.

 

·        Permit is required require bicycle rides of 50 riders (I lead rides for bike clubs and we never know how many will come)

 

·        Require that photographers get a permit when using a tripod.  My photographer group feels afraid to take pictures for a group show.

 

·        The worst was the police actions against the anti-war gathering Feb 15, 2003 and Republican convention in 2004, including barricading people to prevent movement in midtown, then storming the sidewalk with a team of police on horses.  I shot video of that.  See: http://geography.hunter.cuny.edu/~mclarke/AntiWarProtest.htm

 

 

Why it’s bad:  Intro 650B would

·        put a chill on independent scientific investigations of many kinds, and result in only “official” data from the City.  Politics and liability issues can color what the NY police dept. or other city agencies would allow others to measure.  This limitation of air and water quality information to that collected by city agencies would also mean that those coming in from elsewhere would not have had time to get permits)

·        overburden the police department having to process even more permits, setting up new bureaucracy, with additional taxpayer costs.

 

Onerous provisions:

 

·        Scientists and educators will not have freedom to investigate the environment.  If they do without permit they’re criminals.

·        As a result, whole classes of students who would have learned to conduct environmental research will not.

·        The law is vaguely written and can encompass most types of environmental measuring devices. 

·        Who knows what kinds of devices will be regulated? 

·        The police get to write rules which interpret the law.  Will these regulations be written “in the sunshine”?  Such decisions on regulations are not usually made in the open or reviewed often once written. 

·        Who says the police have the expertise to develop regulations on types of environmental equipment that should be controlled, and on who can own / operate them and who can’t?

·        Who will have to come down to Police plaza for an interview? 

·        Will the police choose to deny permits to entire classes of individuals based on politics or limiting the City’s liability?  After 9/11, scientists came from everywhere to make measurements.  Based on these measurements, lawsuits against the City have been possible. 

·        There is no appeal process. 

 

 

The Permit review can take 30 days.   This will effectively kill many investigations.

The purpose of the bill, as stated in the legislative purpose, is to have the City as the only source of pollution information.  This makes us look more like the Soviet Union

 

Not getting a permit can result in

·        Owners may be required to give up their instruments to the NYPD. 

·        May be fined up to $2000 or imprisonment of up to 20 days or both!

 

More onerous (scary) requirements of the bill

·        Educational and scientific investigations will be delayed (and data missed).  In the event of a major environmental disaster, it is important that

·        Will students have to be registered for each and every instrument and investigation?  Parents misunderstanding the need for a police permit and possible interview with the police to get the permit will cause problems for professors.

 

Here are investigations that could be affected:

Studies of diesel particulate in the South Bronx and Harlem and incidence of asthma

Studies of water pollution in the Hudson and East rivers after rain storms

Studies of air contamination after terrorist attacks, building collapses, steam pipe explosions, and transformer fires to name a few.

 

Homeland Security likes Cell Phone Pollution Monitors!

http://public.cq.com/docs/hs/hsnews110-000002524221.html

 

Reported in the Congressional Quarterly, Dept of Homeland Security said in 2007 it has been working with cell phone companies to develop the capability to sniff out danger in the air and transmit alarms to authorities, specifically because it would constitute a wide net and do a better job than any enforcement authorities could possibly do.  It is understood that a false alarm could occur, but if many alarms came in from a localized geographic area, it would signal a problem that would need to be acted upon.  Its working name, “Cell-All”.

S&T spokesman Christopher Kelly said the theoretical system’s strength would lie in the sheer number of sensors. The cell phone sensors might be less sophisticated than highly advanced ones some developers are fitting into hand-held models, but they would make up for it in what Kelly called “ubiquitous detection.”

If just one went off, it could be ruled a false positive, he said. But if several detected a harmful compound, emergency workers would know there was a problem, triangulate the phones’ location react to the situation.

 

Researchers are already developing cell phone air quality / radiation monitors

Researchers at Purdue University are working with the state of Indiana Department of Transportation to develop a system that would use a network of cell phones to detect and track radiation to help prevent terrorist attacks with radiological "dirty bombs" and nuclear weapons.

Such a system could blanket the nation with millions of cell phones equipped with radiation sensors able to detect even light residues of radioactive material. Because cell phones already contain global positioning locators, the network of phones would serve as a tracking system, said physics professor Ephraim Fischbach. Fischbach is working with Jere Jenkins, director of Purdue's radiation laboratories within the School of Nuclear Engineering.

"The sensors don't really perform the detection task individually," Fischbach said. "The collective action of the sensors, combined with the software analysis, detects the source. The system would transmit signals to a data center, and the data center would transmit information to authorities without alerting the person carrying the phone.

 

Full article:

Cell phone sensors detect radiation to thwart nuclear terrorism

[] 


Purdue physics professor Ephraim Fischbach, at right, and nuclear engineer Jere Jenkins review radiation-tracking data as part of research to develop a system that would use a network of cell...

Click here for more information.


WEST LAFAYETTE, Ind. - Researchers at Purdue University are working with the state of Indiana to develop a system that would use a network of cell phones to detect and track radiation to help prevent terrorist attacks with radiological "dirty bombs" and nuclear weapons.

Such a system could blanket the nation with millions of cell phones equipped with radiation sensors able to detect even light residues of radioactive material. Because cell phones already contain global positioning locators, the network of phones would serve as a tracking system, said physics professor Ephraim Fischbach. Fischbach is working with Jere Jenkins, director of Purdue's radiation laboratories within the School of Nuclear Engineering.

"It's the ubiquitous nature of cell phones and other portable electronic devices that give this system its power," Fischbach said. "It's meant to be small, cheap and eventually built into laptops, personal digital assistants and cell phones."

The system was developed by Andrew Longman, a consulting instrumentation scientist. Longman developed the software for the system and then worked with Purdue researchers to integrate the software with radiation detectors and cell phones. Cellular data air time was provided by AT&T.

The research has been funded by the Indiana Department of Transportation through the Joint Transportation Research Program and School of Civil Engineering at Purdue.

"The likely targets of a potential terrorist attack would be big cities with concentrated populations, and a system like this would make it very difficult for someone to go undetected with a radiological dirty bomb in such an area," said Longman, who also is Purdue alumnus. "The more people are walking around with cell phones and PDAs, the easier it would be to detect and catch the perpetrator. We are asking the public to push for this."

Tiny solid-state radiation sensors are commercially available. The detection system would require additional circuitry and would not add significant bulk to portable electronic products, Fischbach said.

The technology is unlike any other system, particularly because the software can work with a variety of sensor types, he said.

"Cell phones today also function as Internet computers that can report their locations and data to their towers in real time," Fischbach said. "So this system would use the same process to send an extra signal to a home station. The software can uncover information from this data and evaluate the levels of radiation."

The researchers tested the system in November, demonstrating that it is capable of detecting a weak radiation source 15 feet from the sensors.

"We set up a test source on campus, and people randomly walked around carrying these detectors," Jenkins said. "The test was extremely safe because we used a very weak, sealed radiation source, and we went through all of the necessary approval processes required for radiological safety. This was a source much weaker than you would see with a radiological dirty bomb."

Officials from the Indiana Department of Transportation participated in the test.

"The threat from a radiological dirty bomb is significant, especially in metropolitan areas that have dense populations," said Barry Partridge, director of INDOT's Division of Research and Development.

Long before the sensors would detect significant radiation, the system would send data to a receiving center.

"The sensors don't really perform the detection task individually," Fischbach said. "The collective action of the sensors, combined with the software analysis, detects the source. The system would transmit signals to a data center, and the data center would transmit information to authorities without alerting the person carrying the phone. Say a car is transporting radioactive material for a bomb, and that car is driving down Meridian Street in Indianapolis or Fifth Avenue in New York. As the car passes people, their cell phones individually would send signals to a command center, allowing authorities to track the source."

The signal grows weaker with increasing distance from the source, and the software is able to use the data from many cell phones to pinpoint the location of the radiation source.

"So the system would know that you were getting closer or farther from something hot," Jenkins said. "If I had handled radioactive material and you were sitting near me at a restaurant, this system would be sensitive enough to detect the residue. "

The Purdue Research Foundation owns patents associated with the technology licensed through the Office of Technology Commercialization.

In addition to detecting radiological dirty bombs designed to scatter hazardous radioactive materials over an area, the system also could be used to detect nuclear weapons, which create a nuclear chain reaction that causes a powerful explosion. The system also could be used to detect spills of radioactive materials.

"It's impossible to completely shield a weapon's radioactive material without making the device too heavy to transport," Jenkins said.

The system could be trained to ignore known radiation sources, such as hospitals, and radiation from certain common items, such as bananas, which contain a radioactive isotope of potassium.

"The radiological dirty bomb or a suitcase nuclear weapon is going to give off higher levels of radiation than those background sources," Fischbach said. "The system would be sensitive enough to detect these tiny levels of radiation, but it would be smart enough to discern which sources posed potential threats and which are harmless."

###


The team is working with Karen White, senior technology manager at the Purdue Research Foundation, to commercialize the system. For more information on licensing the cell phone sensor technology, contact White at (765) 494-2609, kfwhite@prf.org.

Sources:
Ephraim Fischbach, (765) 494-5506, ephraim@physics.purdue.edu
Jere Jenkins, (765) 496-3573, jere@purdue.edu
Andrew Longman, alongman@purdue.edu
Barry Partridge, director, INDOT Division of Research and Development, (765) 463-1521, ext. 251, bpartridge@indot.state.in.us
Andy Dietrick, INDOT Office of Communications, (317) 232-5503, adietrick@indot.in.gov

Related Web site:

Ephraim Fischbach: http://www.physics.purdue.edu/faculty/ephraim/

PHOTO CAPTION:

Purdue physics professor Ephraim Fischbach, at right, and nuclear engineer Jere Jenkins review radiation-tracking data as part of research to develop a system that would use a network of cell phones to detect and track radiation. Such a system could help prevent terrorist attacks with radiological "dirty bombs" and nuclear weapons by blanketing the nation with millions of cell phones equipped with radiation sensors able to detect even light residues of radioactive material. Because cell phones already contain global positioning locators, the network of phones would serve as a tracking system. (Purdue News Service photo/David Umberger)